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The size distributions of all known coding and noncoding DNA sequences are studied in all human chro-
mosomes. In a unified approach, both introns and intergenic regions are treated as noncoding regions. The
distributions of noncoding segments P,.(S) of size S present long tails P, (S) ~S~!~#n, with exponents u,,
ranging between 0.71 (for chromosome 13) and 1.2 (for chromosome 19). On the contrary, the exponential,
short-range decay terms dominate in the distributions of coding (exon) segments P.(S) in all chromosomes.
Aiming to address the emergence of these statistical features, minimal, stochastic, mean-field models are
proposed, based on randomly aggregating DNA strings with duplication, influx and outflux of genomic seg-
ments. These minimal models produce both the short-range statistics in the coding and the observed power law
and fractal statistics in the noncoding DNA. The minimal models also demonstrate that although the two
systems (coding and noncoding) coexist, alternating on the same linear chain, they act independently: the

coding as a closed, equilibrium system and the noncoding as an open, out-of-equilibrium one.

DOI: 10.1103/PhysRevE.75.056102

I. INTRODUCTION

With the rapid growth of genomic data in the past decade,
it now becomes possible to analyze the complexity and di-
versity in the primary structure of DNA and to compare be-
tween chromosomes of the same species and across different
classes of organisms. An aspect of genomic complexity
which has attracted considerable attention since the early
1990s is the discovery of long-range correlations in genomic
sequences. The long-range correlations were initially demon-
strated using the 1/f-spectrum analysis and the DNA walk
model of nucleotide sequences [1-3]. This demonstration
was based on partial sequences of higher eucaryotes avail-
able at the time or on complete sequences of organisms with
limited genomes (procaryotes and viruses). Today, it is pos-
sible to analyze entire chromosomes in most classes of or-
ganisms and thus to look for global as well as local statistical
characteristics.

For the analysis of genomic correlations, the understand-
ing of their origins and their development during evolution,
and the search for common and different features in the DNA
of different classes of organisms, a variety of theoretical,
statistical, and numerical approaches are used, ranging from
linguistic and entropic approaches to wavelets [4—12]. The
outcome of these studies on many classes of organisms has
resulted in detecting nontrivial statistical characteristics, such
as patchiness, nonhomogeneity, extensive repetitions, and
long-range, short-range, and fractal features. In particular, in
recent studies of the size distribution (SD) of coding and
noncoding sequences, one of the authors (A.P.) and collabo-
rators have explored the genomes of diverse organisms
(Homo sapiens, Drosophila Melanogaster, C. elegans, Ara-
bidopsis thaliana, S. cerevisiae, various procaryotes and vi-
ruses). In all cases, short-range correlations were detected in
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the coding (exon) size distributions, while long-range corre-
lations were obtained for the noncoding size distributions of
evolutionary newer organisms [10]. Traces of long-range be-
havior were also found in the noncoding size distributions of
some procaryotes and viruses. Similar types of correlations
were shown in the distance distribution between promoters
[13].

The aim of the current study is to explore the existence of
long-range correlations globally in the human genome,
which is now nearly complete and available in the interna-
tional databases. As will be explained in the next section, in
this approach we choose to divide the human genome in two
categories of segments: (a) segments which may support ex-
tensive or moderate modifications during evolutions and
these are the intergenic regions and the introns, respectively,
and (b) segments which cannot be modified without damag-
ing or changing drastically the cell functions and these are
the coding regions which are identical with the exons situ-
ated within the genes. In the rest of this study the terms
“exon” and “coding segments” (“regions”) will be used al-
ternatively to indicate the segments which are translated for
the production of proteins. As shown in Sec. II, the coding
(exon) and noncoding size distributions have striking statis-
tical differences, mirrored in the corresponding correlations,
and these features are common in all chromosomes. To un-
derstand the emergence of the different types of distributions
and correlations, minimal, stochastic, mean-field models are
proposed in the last part of this study, which take into ac-
count elementary evolutionary processes. The proposed
models, on the one hand, generate the correlations observed
in the human genome and, on the other hand, connect the
coding and noncoding formation and evolution with closed
(equilibrium) and open (out-of-equilibrium) systems, respec-
tively.

In the next section statistical characteristics of the human
data are first presented as obtained from the international
databases and the size distributions of coding (exon) and
noncoding sequences are studied in a unified way. A pure
power law is observed to characterize the noncoding size
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TABLE I. Characteristic features and exponents describing the coding and noncoding SDs of the human

genome.
Coding Noncoding

Chromosome Size Seq. Coding a. Me Qe Me
No. (108 bps) (%) (%) (x1073) (xX1077)

1 2.45 90.8 1.41 0.32 1.85 8.0 0.92
2 243 97.8 1.03 0.10 1.80 7.0 0.89
3 2.00 97.6 0.98 0.10 1.95 7.0 0.83
4 1.91 97.8 0.72 0.15 1.80 6.0 0.82
5 1.81 98.3 0.87 0.15 1.75 7.0 0.82
6 1.71 97.9 1.04 0.30 1.80 7.0 0.82
7 1.59 97.6 1.05 0.05 1.85 12.0 0.82
8 1.46 97.5 0.80 0.10 1.85 9.0 0.80
9 1.38 85.1 1.01 0.15 1.65 6.0 0.85
10 1.35 97.2 1.08 0.13 1.85 9.0 0.82
11 1.34 97.5 1.49 0.10 1.95 9.0 0.86
12 1.32 98.4 1.32 0.10 2.00 9.3 0.83
13 1.14 83.7 0.58 0.08 1.80 7.0 0.71
14 1.06 83.0 1.04 0.10 1.95 0.5 1.05
15 1.00 81.1 1.24 0.13 1.85 9.0 0.85
16 0.89 88.8 1.67 0.18 1.85 7.0 0.85
17 0.79 98.9 2.52 0.20 1.95 30.0 0.90
18 0.76 98.1 0.72 0.02 1.75 7.0 0.81
19 0.64 87.4 3.42 0.02 1.95 2.0 1.20
20 0.62 95.3 1.37 0.25 1.90 10.0 0.89
21 0.47 72.8 0.75 0.05 2.00 6.0 0.74
22 0.50 70.2 1.52 0.05 1.90 0.5 0.98
X 1.55 97.1 0.87 0.15 1.80 9.0 0.73
Y 0.58 43.1 0.22 0.35 1.50 20.0 0.40

distributions while in the coding the exponentially decaying
terms dominate. In the same section a short discussion is
devoted to the size distribution of introns and intergenic re-
gions. In Sec. Il a unified model is presented, based on
aggregative formation of DNA from macromolecular seg-
ments, which accounts for the observed short- and long-
range characteristics of coding and noncoding DNA, respec-
tively. Finally, the main conclusions of this work are drawn
and open issues are addressed.

II. CODING AND NONCODING SIZE DISTRIBUTION
STATISTICS

The human genomic data were obtained from the Gen-
Bank. In this database the primary DNA structure is given
together with information about functionality, such as precise
positions of coding segments (CDS), mRNA positions,
genes, repetitive elements, etc. Some of these characteristics
are collectively shown in Table I for comparison.

In column 2 of Table I, the size of the human chromo-
somes is given in numbers of base pairs (bps). The largest
chromosomes are the first in order, and their size decreases

from top to bottom (with the exception of the last three chro-
mosomes 22, X, and Y). In the GenBank database each base
pair (bp) is denoted as A (adenine), G (guanine), C (cy-
tosine), T (thymine), or N (unidentified). The unidentified
bps may be pairs completely unknown (resisting to sequenc-
ing) or partly known (e.g., known to be purines or pyrim-
idines) or the various sequencing laboratories disagree on
their identification. In column 3 of Table I, the percentage of
identified bps is presented, called “Seq. %.” This varies from
98.7% in chromosome 17 to 43% for chromosome Y. In the
fourth column the coding percent, known up to date, of each
chromosome is recorded. This is as low as 0.72% for chro-
mosomes 4 and 18, with a maximum value of 3.42% for
chromosome 19.

The size distributions of exons and introns have been the
subject of many previous investigations [14—18]. In this
study we choose, mainly, to treat in a uniform way all se-
quences which do not code for protein production. Thus the
noncoding sequences include both introns and regions be-
tween consecutive genes (intergenic regions). This unified
approach of the noncoding is followed because all noncoding
DNA segments have common characteristics in their evolu-
tion. For example, they support major or moderate influences
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FIG. 1. (a) Number of coding and noncoding segments for chro-
mosome 12. (b) Same data as in (a) in logarithmic scale to demon-
strate the size difference in the coding and noncoding sequences. In
all data running averages are considered in 20 bins.

from the environment (e.g., influx or outflux of genomic ma-
terial, mutations, duplications, etc.); thus they can be both
classified as out-of-equilibrium systems. Alternatively, the
coding segments (exons) rarely support external influences.
Any modification to the structure of a coding segment will
most probably be fatal for the cell (interruption of the pro-
duction of some protein), and thus the coding DNA behaves
as a closed system at equilibrium and does not support envi-
ronmental influences in the primary structure.

After separating the coding and noncoding DNA se-
quences in each chromosome, their respective SD of coding
and noncoding segments were studied as a function of the
sequence size S, which is taken equal to the number of bps in
the sequence. For clarity and to better distinguish the coding
from the noncoding data, the number of coding and noncod-
ing segments instead of the segment percentage is depicted
in the following five figures. Representative SD plots are
shown in Fig. 1. It is noted, confirming also earlier reports,
that both plots present a maximum around 100 bps and that
the coding sequences rarely reach sizes of the order of
10* bps, while the noncoding ones easily reach easily sizes
of 10° bps [15,16]. From the same figure it is also evident
that the tails of the coding fall much faster than the noncod-
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ing ones. Similar behavior is demonstrated in all other hu-
man chromosomes.

To avoid statistical fluctuations the cumulative size distri-
butions are studied which are defined as

QL(S) = J PL'(r)dr’ an(S) = J Pmr(r)dr (1)
N N

for coding and noncoding sequences, respectively. Equations
(1) represent a cumulative distribution from size § to o,
whereas the terms in statistical physics often refer to that of
sizes from O to S. The current definition is preferable for
long-range distributions, because the power law in the tail
characteristics of the original distribution is conserved in the
cumulative. Namely, if a distribution P(r) has a power law
tail with exponent —1—pu, the cumulative distribution Q(S)
acquires a power law tail with exponent —u, while if P(r)
follows an exponential decay (more generally a short-range
tail), the cumulative distribution will also follow an exponen-
tial decay (more generally short-range decay) [10].

In Fig. 2 the cumulative number of coding and noncoding
segments of the first 22 human chromosomes are depicted in
a double-logarithmic scale (coding and noncoding SDs are
depicted in the same plots). Since the

(number of coding segments)
= (number of noncoding segments) + 1, (2)

both SDs start from the same value (x1 unit) at S=1. The
coding SDs drop abruptly (shorter tails) while the noncoding
ones (longer tails) fall more smoothly. In all four plots, for
comparison, the dotted and dashed lines represent pure
power laws with exponent u=2 and u=1, respectively. It is
striking that the noncoding SDs of the 22 chromosomes
present a clear power law region for over two orders of mag-
nitude in the 10*~10° bp scales, with exponent u,,. mostly
less than 1. Comparing the coding SDs with the dotted line,
it is obvious that they decay following a power law with
exponent . greater or equal to 2. Power law functions with
large exponents (u>2) cannot be distinguished from expo-
nential (short-range) functions when the sample size and the
x-axis extension are limited. Accordingly, short-range, expo-
nential decay behavior is manifested by the coding (exon)
size distributions in human DNA.

For completeness, in Fig. 3 we depict the cumulative
number of coding and noncoding segments of chromosomes
X and Y separately. We note a significant deviation in the
power law exponent i,y compared to other chromosomes,
which is attributed to its low sequencing percentage, only
43% (see Table I).

To capture the long- and short-range characteristics in the
SDs of coding and noncoding sequences we treat them in a
unified way by fitting them to the same general formula con-
taining both exponential (short-range) terms and power law
(long-range) terms:

O(S) ~ BS™exp[— aS] for S>1, (3)

where B is a normalization factor and « is the exponential
decay exponent. The results are shown in Table 1.
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FIG. 2. (Color online) Cumulative coding and noncoding SDs in
22 human chromosomes. The solid symbols correspond to coding
segments while the open symbols correspond to noncoding ones. In
all graphs the dashed (dotted) lines represent pure power laws with
slope —1 (=2). Coding sequences show power law behavior with
exponent u.=2, while noncoding ones show power law behavior
with w,.<1.
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FIG. 3. (Color online) Cumulative coding and noncoding SDs of
chromosomes X (circles) and Y (squares). The solid symbols cor-
respond to coding segments while the open symbols correspond to
noncoding ones. The dashed (dotted) lines represent pure power
laws with slope =1 (=2).

As we can see in Table I, in the noncoding SDs the expo-
nential decay exponent «,,. is of the order of 1077, while the
main contribution comes from the power law term S™#nuc,
with u,. mostly around the value 0.85. The values of u,,.
have error bars of the order of Au,.~ +(0.05-0.10) depend-
ing on the sequence while Aa,,~ +0.5X 107", The highest
power law exponent is currently presented by chromosome
19, tye19=1.2%0.08, with sequenced percent 87.43% and
coding percent 3.42% (highest). The lowest power law expo-
nents are presented by chromosomes X and Y, w,.x
=0.73+0.05, u,.y=0.40£0.10, and w,.;3=0.71+0.05, with
sequenced percents seqy=97.14%, seqy=43.10%, and seq,3
=83.73% and coding percent cody=0.87%, cody=0.22%,
and cod;3=0.59%, respectively. Minor changes are expected
in the exponent values (especially for chromosome Y) after
the full human genome annotation.

From the same table, we note that the functional form of
coding SDs includes an exponential term with exponent a,
of the order of 10~—i.e., three orders of magnitude larger
than in the noncoding sequences. Thus the exponential part
in the coding sequences is non-negligible. The power law
exponent is of the order of u.~2 which is borderline be-
tween short- and long-range behavior. Error bars on . are of
the order of Aw,.~ £(0.05-0.10) depending on the se-
quence, while Aa,~ +0.05 X 103, Taking into account the
exponential term which dominates in the large scales, we
conclude that the coding SDs follow short-range laws.

In the analysis performed so far, both introns and inter-
genic regions are treated collectively as noncoding regions.
As was discussed earlier, the introns are located within the
gene regions and they are known to include some functional
units, such as promoters and regulatory elements. These seg-
ments can suffer moderate modifications, but not extensive
ones. On the other hand, such restrictions do not hold on the
evolution of intergenic regions which can absorb extensive
changes without damaging the cell functions. Thus the intron
size distribution is expected to present some characteristics
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FIG. 4. Cumulative coding (circles) and intron (crosses) and
intergenic region (stars) SDs of chromosome 17.

similar to the coding SDs as has been confirmed by other
authors [15-18]. One of these characteristics is the maximum
on the intron size distribution, which is situated around the
value of 100 bps as in the case of coding. However, since
modifications do take place in introns, long-range tails are
also expected in their size distribution.

To clarify the difference between intron size distributions
and intergenic regions, the GenBank data were analyzed as
follows: from the gene regions (CDS) the positions of introns
and exons were obtained separately and their size distribu-
tions were found. The segments which separate the different
gene regions were considered as intergenic regions, and their
size distributions were calculated. Representative results are
shown in Fig. 4 for chromosome 17. Here, the three cumu-
lative distributions of exons (coding), introns, and intergenic
regions are shown for comparison. It is clearly observed that
the size distribution of the coding (open circles) drops
abruptly and the tails demonstrate exponential decay, while
the intron size distribution demonstrates longer tails with ex-
ponent p~ 1.2 which clearly indicates a power law tail. Thus
the pure intron size distributions present dual characteristics:
short range (such as the maximum in the 100 bps area) com-
plimented by longer tails. As for the intergenic size distribu-
tions the tail is clearly longer and the approximate exponent
is calculated as w~0.7. When the two distributions of in-
trons and intergenic regions are considered together, the in-
tergenic distribution drags the intron one toward the right,
producing one single composite exponent u~0.9, as was
reported in Table I. This separation in introns and intergenic
regions is only approximate, since the annotation of the hu-
man genome is not complete and all the genes have not been
identified, yet the general trends are clearly manifested. The
same general behavior is observed in all other human chro-
mosomes.

III. MODELING THE SHORT- AND LONG-RANGE
FEATURES OF DNA

The emergence of long-range correlations in DNA has
been previously studied using minimal models [1-3,8,11].

PHYSICAL REVIEW E 75, 056102 (2007)

Most minimal models refer to long-range correlations related
to DNA nucleotide chains converted to binary sequences. In
the sequel we explore the emergence of long- and short-
range correlations in the alternating noncoding and coding
segments and we introduce an appropriate minimal, stochas-
tic model of genomic evolution which takes into account
elementary evolutionary processes such as mixing of ge-
nomic material (through a cut-and-paste mechanism), inser-
tion of random segments, outflux of segments and duplica-
tion.

The model is inspired by the Takayasu aggregation model
[11,19] and can be described as follows.

(i) Consider a linear chain which initially consists of al-
ternating coding and noncoding strings. The initial size of the
strings is not important (especially in the noncoding) as it
will be soon forgotten due to aggregation and mixing events.
In any case all segments may be chosen to have random
initial size.

(ii) At every elementary time step a segment of random
size (random between an upper and a lower size) is added on
a randomly chosen noncoding string on the line. Thus the
length of chosen noncoding string increases. This is an inser-
tion event.

(iii) A mixing, or cut-and-paste, event consists of reducing
the size of a given random noncoding string to a minimum
size and adding its content to another randomly chosen non-
coding string.

(iv) A duplication event consists of doubling the size of a
randomly chosen noncoding string.

(v) An outflux event consists of eliminating the contents
of a randomly chosen noncoding string.

(vi) In coding strings only one insertion is allowed at the
beginning and very seldom additional insertions are sup-
ported. (Biological evidence indicates that modifications are
rarely supported by “working” coding segments.)

(vii) After having taken into account the above events
with appropriate probability factors (relative frequencies) the
algorithm returns to step (ii) for a new elementary time step
to start.

Note that insertion of random segments, cut-and-paste
events, and outflux events are allowed only for noncoding
strings.

Previous analytical mean-field calculations have shown
that in the absence of the outflux mechanism the noncoding
size distributions follow a pure power law with exponent u
=0.5[19]. In the case where a random outflux of segments is
considered, the power law takes the exact exponent pu=1
only when the random outcoming and incoming segments
have equal sizes on the average. The pure power laws are
modified if we further assume that the outflux mechanism is
weaker in comparison to the influx. This is biologically ac-
ceptable, because the current view of biology admits that the
genome of evolutionary newer organisms increases in size,
in spite of the occasional, spontaneous removal of genomic
material.

Using the above algorithm linear chains of sizes up to 3
X 108 bps have been created. In Fig. 5 representative graphs
of cumulative noncoding size distributions are presented. In
the simulation the inserted segments have random sizes be-
tween 1 and 50 bps and the relative frequency of (cut-and-
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FIG. 5. (Color online) The mean-field model results for the non-
coding size distributions. The dashed line corresponds to results
with outflux of genomic segments while the solid line indicates
results with both influx and outflux mechanisms. The straight lines
are guides to the eye.

past)/(insertion) events is 0.1. The results without outflux are
presented with the black solid line and compare well with the
straight solid line which represents a power law with expo-
nent u=0.5. If a weak outflux process is added (outflux/
insertion events is 0.01), then the power law exponent is
modified and a region with exponent p~ 0.8 emerges, which
is consistent with the exponents shown in Table I, for the
noncoding. The same algorithm gives a short-range distribu-
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tion of the number of coding segments, in accordance also
with the human genome data.

IV. CONCLUSIONS

In summary, we have analyzed all human chromosomes
and have demonstrated that the noncoding size distributions
present power law behavior and are consistent with open,
out-of-equilibrium systems, while the coding size distribu-
tions present short-range behavior as in closed systems, at
equilibrium. We also explore the intron and intergenic size
distributions. The latter present strong long-range tails while
the former demonstrate intermediate behavior having some
short-range features as the coding (exon) distributions with
additional long-range tails as found in intergenic regions. A
minimal, stochastic, mean-field model is proposed, which
takes into account elementary, evolutionary processes (inser-
tion of random segments, duplication, outflux, and mixing
events) and produces the observed nontrivial statistical char-
acteristics.

From preliminary studies, we have seen that these long-
range features are also observed in other higher eucaryotic
genomes. With the rapid growth of genomic data and with
the completion of chromosomes from lower animalia and
plants the persistence of these characteristics can soon be
tested across organisms.
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